STRUCTURAL STUDY OF A KAOLINITE SINGLE-CRYSTAL USING PED AND DIFFRACTION TOMOGRAPHY

DÓDONY, L.¹*, PEKKER, P.² & CORA, I.¹

¹ Department of Mineralogy, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary

² Institute for Nanotechnology, Bay Zoltán Foundation for Applied Research, H-3515 Miskolc-Egyetemváros, Hungary * E-mail: dodony@t-online.hu

Kaolinite is an abundant submicrometer-sized "TO"type dioctahedral sheet silicate $[Al_2Si_2O_5(OH)_4]$. Its building units are the infinite 2D layers of corners shared SiO₄ tetrahedra and edge connected $Al_2O_2(OH)_4$ octahedra. Except of ZVYAGIN's (1960) oblique texture patterns based structure solution, X-ray and neutron diffraction methods were used on powdered samples.

The structure of a kaolinite *single crystal* from Mád (Hungary) was solved using precession electron diffraction (VINCENT & MIDGLEY, 1994; OWN, 2005; AVILOV *et al.*, 2007) and the newly developed technique of electron-diffraction tomography (KOLB *et al.*, 2007, 2008). The data collection was carried out using a Tecnai G²X transmission electron microscope equipped with a CeB₆ gun operating at 200 kV and a tomography holder with a tilt range up to $\pm 70^{\circ}$. We acquired intensities from 90° large wedge of reciprocal space within 0.8 Å resolution limit using a 4 Mb, 16 bits, Eagle CCD detector.

Structure of kaolinite was determined in the SIR2008 (implemented in the Il Milione package; BURLA *et al.*, 2007) and refined to R1 = 0.227, wR² = 0.547 using 236 observed unique reflections in SHELX97 (SHELDRICK, 2008). As a result we described kaolinite in the C1 triclinic space group (a = 5.056 Å, b = 9.122 Å, c = 7.250 Å, $a = 88.72^{\circ}$, $\beta = 104.18^{\circ}$, $\gamma = 90.25^{\circ}$). Largest deviations are within a ± 0.36 value in the differential Fourier-map.

Authors thank the HAS CRC for financial support through OTKA grant No. 68562.

References

- AVILOV, A., KULIGIN, K., NICOLOPOULOS, S., NICKOLSKIY, M., BOULAHYA, K., PORTILLO, J., LEPESHOV, G., SOBOLEV, B., COLLETTE, J.P., MARTIN, N., ROBINS, A.C. & FISCHIONE, P. (2007): Ultramicroscopy, 107: 431–444.
- BURLA, M.C., CALIANDRO, R., CAMALLI, M., CARROZZINI, B., CASCARANO, G.L., DE CARO, L., GIACOVAZZO, C., POLIDORI, G., SILIQI, D. & SPAGNA, R. (2007): Journal of Applied Crystallography, 40: 609–613.
- KOLB, U., GORELIK, T., KÜBEL, C., OTTEN, M.T. & HUBERT, D. (2007): Ultramicroscopy, 107: 507– 513.
- KOLB, U., GORELIK, T. & OTTEN, M.T. (2008): Ultramicroscopy, 108: 763–772.
- OWN, C.S. (2005): System design and verification of the precession electron diffraction technique. PhD Thesis, Northwestern University, Evanston, Illinois. (http://www.numis.northwestern.edu/Research/Curre nt/precession.shtml)
- SHELDRICK, G.M. (2008): Acta Crystallographica, A64: 112–122.
- VINCENT, R. & MIDGLEY, P.A. (1994): Ultramicroscopy, 53: 271–282.
- ZVYAGIN, B.B. (1960): Kristallografiya, 5: 32-41.

Atom	X	У	Z	U _{iso}
Sil	0.429	0.930	0.425	0.024
Si2	0.919	0.764	0.449	0.024
Al2	0.714	1.106	0.836	0.027
Al3	0.716	0.770	0.834	0.008
01	0.544	0.933	0.691	0.001
O2	0.458	1.125	0.953	0.017
O3	0.464	1.222	0.666	0.017
O4	0.620	0.832	0.380	0.013
05	0.438	1.088	0.393	0.019
O6	0.967	1.256	0.934	0.003
07	0.899	0.944	0.893	0.068
08	0.141	0.857	0.369	0.035
09	1.026	1.118	0.713	0.016

Atom coordinates and isotropic displacement parameters for kaolinite of Mád, Hungary.

Joint 5th Mineral Sciences in the Carpathians Conference and 3rd Central-European Mineralogical Conference 20–21 April, 2012, University of Miskolc, Miskolc, Hungary